В мировой практике имеется несколько важных технологических подходов к построению системы синхронизации. Первый из них заключается в разделении всей системы синхронизации на межузловую и внутриузловую системы. В результате возникла концепция интегрированных систем синхронизации BITS. Концепция BITS, представленная на рис. 3.6, охватывает три основных подсистемы: систему межузловой синхронизации (Interoffice Timing), систему внутриузловой синхронизации (Intraoffice Timing) и подсистему контроля и управления качеством синхронизации (QoS).

BITS



Интеграция на уровне

Использование единого единой системы

Оборудования



Интеграция в TMN

Рис. 3.6. Концепция построения интегрированных систем синхронизации BITS.

Система межузловой синхронизации предусматривает размещение в ключевых узлах сети генераторов синхронизации и построение ситемы распределения синхрочастот по сети с использованием трафиковых или выделенных каналов связи. Эта система является основой любой системы синхронизации, поэтому она наиболее важна при проектировании. Система межузловой синхронизации имеет собственную топологию, часто отличную от топологии сети, и тесно связана со структурой, как первичной, так и вторичной

телекоммуникационной сети. При расширении и реконфигурации сети связи система межузловой синхронизации также должна изменяться и модернизироваться.

Система внутриузловой синхронизации имеет более локальное значение, поскольку она определяет порядок синхронизации различных цифровых устройств в пределах одного узла сети. В систему внутриузловой синхронизации могут входить специальные генераторы, однако в большей степени эта система строится на основе объединения генераторов, входящих в состав цифровых устройств связи, размещенных на узле. В отличие от системы межузловой синхронизации, которая должна проектироваться, строиться и обслуживаться системно, с учетом топологии и процессов, проходящих во всей сети, система внутриузловой синхронизации создается локально, привязываясь к конкретному узлу связи. Модернизация сети связи может требовать модификации системы только в случае, если первая модернизирует конкретный узел либо приводит к изменению параметров синхросигнала, от которого синхронизируется данный узел.



Учитывая, что в настоящее время значительно повысились требования к надежности и качеству систем синхронизации, в состав современной системы включается дополнительно подсистема, которая непосредственно связана с обслуживанием системы синхронизации – подсистема контроля и управления качеством системы синхронизации (QoS). Основным назначением этой системы являются управление, диагностика и тестирование системы синхронизации.

Обеспечение высоких параметров качества и надежности системы связи требуют от оператора постоянного контроля за состоянием системы синхронизации. Для осуществления управления системой синхронизации создается система управления, интегрированная в общую платформу TMN, так что оператор имеет возможность контролировать состояние системы синхронизации и осуществлять ее реконфигурацию из единого центра в режиме реального времени. Особенно важные функции выполняет система управления в процессах реконфигурации системы синхронизации. Для этого используются сигналы о параметрах качества системы синхронизации (SSM).

Разделение в концепции BITS всех генераторов сети на межузловую и внутриузловую систему синхронизации значительно уменьшает рассматриваемое количество устройств. Есть узлы сети, которые рассматриваются как отдельные генераторы, и так строится система межузловой синхронизации. На узлах сети имеется большое количество разных цифровых устройств (иногда сотни или тысячи). Синхронизация этих устройств в пределах узла – задача отдельная. Таким образом, в системе межузловой синхронизации мы видим только узлы, а цифровые устройства мы видим в системе внутриузловой синхронизации.

Основная проблема – система межузловой синхронизации, именно она является территориально-распределенной. Для синхронизации отдельных устройств внутри узла модно в конце концов проложить специальный кабель. Но этого нельзя сделать в системе межузловой синхронизации, где используются только существующие каналы связи.

Синхронизация в сетях SDH. Международные органы стандартизации и, в частности, МСЭ работают над определением характеристик генераторного оборудования СЦИ – SEC (SDH Equipment Clock). Характеристики SEC содержаться в нескольких Рекомендациях ETSI и МСЭ-Т, предоставляющих полную спецификацию параметров точности и стабильности, а также подробное функциональное описание. Здесь SEC представлен функциональным блоком источника синхросигнала синхронного оборудования SETS (Synchronous Equipment Timing Sourse).

Источник синхронизации может выбираться блоком SETS среди трех опорных точек:

Т1 – опорный сигнал, выделенный из входного сигнала STM-N;

Т2 – опорный сигнал, выделенный из входнго сигнала ПЦИ;

Т3 – опорный сигнал, полученный из внешнего устройства синхронизации через физический интерфейс синхронизации.

Кроме того, SETS может синхронизироваться от входящего в его состав внутреннего генератора. В сторону передачи SETS обеспечивает синхронизацию:

Всех функциональных блоков в составе оборудования СЦИ через опорную точку Т0;

Внешний порт синхронизации через опорную точку Т4.

Блок тактового генератора синхронного оборудования может работать в следующих режимах:

Режим захвата синхронизации от входного опорного сигнала(точки Т1, Т2 или Т3), выбранного переключателем;

Режим удержания;

Режим свободных колебаний с точностью частоты .

В зависимости от структуры распределения сигналов сетевой синхронизации существует несколько вариантов или режимов синхронизации блока SETS и распределения его синхросигнала:

Синхронизация от линейного сигнала. Опорный синхросигнал выделяется из линейного сигнала направления «Восток» или «Запад» (Т1). Это обычный режим синхронизации в сетях типа цепочки или кольца.

Синхронизация от компонентного сигнала. Опорный синхросигнал выделяется из компонентного сигнала, который может быть либо сигналом STM-N (Т1), либо сигналом ПЦИ (Т2).

Внешняя синхронизация. Сетевой элемент синхронизируется от выделенного внешнего опорного синхросигнала (Т3). Этот режим синхронизации применяется, например, когда сетевой элемент получает синхросигнал от генераторного оборудования сети синхронизации.

Внутренняя синхронизация. Генераторное оборудование сетевого элемента не получает никакого опорного синхросигнала (режим свободных колебаний или режим удержания.

Общеизвестно, что технология SDH/SONET может реализовать все свои преимущества, лишь опираясь на распределение по сети надежного синхросигнала надлежащего качества. В противном случае операции с указателями могут привести к избыточному значению джиттера и, следовательно, к снижению достоверности передачи информации в транспортируемых компонентных сигналах, особенно при большом числе переприемов.

В настоящее время средства сетевой синхронизации повсеместно признаны прибыльным сетевым ресурсом, позволяющим помимо удовлетворения потребностей СЦИ/СОНЕТ осуществить цифровую коммутацию без проскальзываний, улучшить рабочие характеристики транспортных услуг на основе АТМ и повысить качество множества различных услуг (например, цифровых сетей связи с интеграцией услуг, мобильной сотовой связи и т. д.).

По этой причине большинство ведущих операторов связи организовали национальные сети синхронизации, чтобы доставить общий эталонный (опорный) сигнал синхронизации к каждому узлу сети электросвязи. МСЭ-Т и ETSI выпустили новые стандарты по синхронизации, пригодные для работы современных (включая те, которые базируются на СЦИ/СОНЕТ) цифровых сетей электросвязи. Эти стандарты содержат более строгие и более определенные требования к джиттеру и вандеру на интерфейсах синхронизации, требования к точности и стабильности устройств синхронизации, а также к архитектуре сетей синхронизации.

Синхронизация и цифровая передача в сетях SDH/SONET. В сетях СЦИ используются преимущества сетевой синхронизации для снижения джиттера и вандера в выходных компонентных потоках. Дело в том, что в сложных сетях с несколькими переприемами (загрузкой/выгрузкой) ПЦИ-СЦИ и СЦИ-ПЦИ и при использовании оборудования различных поставщиков, удовлетворить требованиям к фазовым дрожаниям на границах ПЦИ/СЦИ можно только при точной синхронизации всех сетевых элементов СЭ (NE), избегая каких-либо операций с указателями. Поэтому в сетях SDH необходимо синхронизировать не только первичные мультиплексоры и цифровое коммутационное оборудование, но и узлы транспортных сетей.

В сетях СЦИ не рекомендуется передавать синхронизацию в сигналах, размещенных в циклах STM-N (например, 2,048 Мбит/с), так как компонентные сигналы полезной нагрузки синхронного транспортного модуля не могут эффективно передавать тактовые сигналы из-за избыточного джиттера, наблюдаемого при коррекции указателей. Наилучшим и прямым способом передачи синхросигнала в сети СЦИ служит его передача непосредственно в групповых сигналах STM-N. Тактовый сигнал, выделенный из сигналов STM-N, имеет лучшее качество, которое можно достичь в настоящее время. На него воздействует только джиттер, вносимый линией (например, джиттер, обусловленный тепловым шумом и условиями окружающей среды в оптической линии), а не выравнивание по битам или какие-либо другие преобразования.

Схема синхронизации двух цифровых коммутационных станций в сетях СЦИ показана на рис. 3.7. Внешнее генераторное оборудование SASE (Stand Alone Synchronization Equipment) первой станции (узла) синхронизирует не только генераторное оборудование цифровой коммутационной станции, но и задающий генератор оборудования СЦИ SEC. Таким образом, здесь выходной групповой сигнал является синхронным с ведущим генератором сети. На приемном конце SEC не синхронизируется непосредственно от входящего сигнала STM-N. Специальная функция тактового генератора оборудования СЦИ (переключатель) позволяет выделить тактовый сигнал из входного сигнала STM-N и непосредственно направить его через интерфейс синхронизации 2,048 МГц к генераторному оборудованию SASE на этой станции. Это оборудование SASE распределяет свои сигналы синхронизации по всему оборудованию узла, включая цифровую коммутационную станцию и демультиплексор СЦИ.

2,048 Мбит/с 2,048 Мбмт/с


Сеть СЦИ



2,048 МГц 2,048 МГц



Задающий

генератор

Рис. 3.7. Схема синхронизации двух станций.

Казалось бы, этот способ синхронизации генераторного оборудодования второй станции слишком сложен, но он дает наилучшее решение. Действительно, генераторное оборудование SASE имеет более высокую стабильность и лучшие возможности фильтрации синхросигнала, чем простые генераторы SEC. При использовании этой схемы генераторное оборудование цифровой коммутационной станции и демультиплексора СЦИ во второй станции синхронизируется по более стабильному сигналу синхронизации. Более того, если сигнал STM-N пропадет, SASE обеспечивает достаточно долго выходную частоту в режиме свбодных колебаний генератора с намного большей точностью, чем точность соответствующей частоты генератора SEC.

Согласно схеме цифровое оборудование в сети синхронизируется независимо и взаимодействует друг с другом только через каналы передачи данных (каналы трафика). Различие тактовых частот, неизбежное для такой схемы, будет приводить к появлению в ней проскальзываний. Исключить проскальзывание в такой схеме нельзя, но их частота будет связана с относительной нестабильностью двух генераторов ПЭГ. Например, если взаимная нестабильность генераторов будет находиться в пределе , то проскальзывания будут происходить не чаще одного раза в полгода. Этого никто не заметит, так что такая схема в данном случае может вполне использоваться.

Другим вариантом построения системы межузловой синхронизации является использование принципа принудительной синхронизации, когда один узел сети синхронизируется от другого. Такая схема принята в международной практике как схема построения систем межузловой синхронизации выделенных сетей или их участков, поскольку обеспечивает наибольшую стабильность работы системы. Принцип принудительной синхронизации предусматривает построение иерархической структуры синхронизации с одним или несколькими первичными генераторами синхросигнала (рис. 3.9). Наличие нескольких графов синхронизации дает возможность резервирования цепей синхронизации. Так, например, на рис. 3.9 показаны как основные пути синхронизации (P – primary), так и резервные (S – secondary). Каждое устройство в сети может переходить от основного источника синхронизации к резервному в случае потери канала взаимодействия с основным источником. Такая система обладает повышенной надежностью и реализована на всех современных сетях связи. Кроме того, иерархическая топология системы синхронизации соответствует топологии самой системы связи, чем легко достигается взаимодействие обеих сетей.

"Об утверждении Правил применения оборудования тактовой сетевой синхронизации"

В соответствии со статьей 41 Федерального закона от 7 июля 2003 г. № 126-ФЗ "О связи" (Собрание законодательства Российской Федерации, 2003, № 28, ст. 2895) и пунктом 4 Правил организации и проведения работ по обязательному подтверждению соответствия средств связи, утвержденных постановлением Правительства Российской Федерации от 13 апреля 2005 г. № 214 (Собрание законодательства Российской Федерации, 2005, № 16, ст. 1463) приказываю:

1. Утвердить прилагаемые Правила применения оборудования.

2. Направить настоящий приказ на государственную регистрацию в Министерство юстиции Российской Федерации.

3. Контроль за исполнением настоящего приказа возложить на заместителя Министра информационных технологий и связи Российской Федерации Б.Д. Антонюка.

Л.Д. Рейман

Регистрационный № 8652

Правила применения оборудования тактовой сетевой синхронизации

(утв. приказом Министерства информационных технологий и связи РФ
от 7 декабря 2006 г. № 161)

I. Общие положения

1. Правила применения оборудования тактовой сетевой синхронизации (далее - Правила) разработаны в соответствии со статьей 41 Федерального закона от 7 июля 2003 г. № 126-ФЗ "О связи" (Собрание законодательства Российской Федерации, 2003, № 28, ст. 2895) в целях обеспечения целостности, устойчивости функционирования и безопасности единой сети электросвязи Российской Федерации.

2. Правила устанавливают обязательные требования к параметрам оборудования тактовой сетевой синхронизации (далее - оборудование), предназначенного для использования в сети связи общего пользования и технологических сетях связи в случае их присоединения к сети связи общего пользования. Подключение оборудования к сети связи общего пользования осуществляется с использованием физических цепей.

3. Правила распространяются на следующие виды оборудования:

1) первичный эталонный источник (ПЭИ);

2) первичный эталонный генератор (ПЭГ);

3) вторичный задающий генератор (ВЗГ);

4) местный задающий генератор (МЗГ);

5) распределитель сигналов синхронизации (РСС);

6) преобразователь сигналов синхронизации (ПСС);

7) система управления тактовой сетевой синхронизацией (СУ ТСС).

Первичный эталонный источник предназначен для формирования эталонных сигналов синхронизации. Источником эталонного сигнала является автономное оборудование или приемники навигационных спутниковых систем: ГЛОНАСС - Глобальная навигационная спутниковая система и Глобальная система навигации и определения местоположения (GPS)*, при этом эталонные синхросигналы, поступающие на вход оборудования синхронизации от системы GPS, используются в качестве резерва.

4. Оборудование и системы управления, указанные в пункте 3 Правил, идентифицируются как оборудование тактовой сетевой синхронизации и в соответствии с пунктом 17 Перечня средств связи, подлежащих обязательной сертификации, утвержденного постановлением Правительства Российской Федерации от 31 декабря 2004 г. № 896 (Собрание законодательства Российской Федерации, 2005, № 2, ст. 155), должно пройти процедуру обязательной сертификации в порядке, установленном Правилами организации и проведения работ по обязательному подтверждению соответствия средств связи, утвержденными постановлением Правительства Российской Федерации от 13 апреля 2005 г. № 214 (Собрание законодательства Российской Федерации, 2005, № 16, ст. 1463).

II. Требования к оборудованию тактовой сетевой синхронизации

5. Требования к управлению тактовой сетевой синхронизацией приведены в приложении № 3 к настоящим Правилам.

6. Для оборудования тактовой сетевой синхронизации устанавливаются следующие обязательные требования к параметрам:

а) сигналов синхронизации согласно приложению № 1 к настоящим Правилам;

б) ПЭИ, ПЭГ, ВЗГ, МЗГ, РСС, ПСС согласно приложению № 2 к настоящим Правилам;

в) электропитания согласно приложению № 4 к настоящим Правилам;

г) подпункт исключен согласно приказу Министерства связи и массовых коммуникаций РФ от 23 апреля 2013 г. № 93;

д) устойчивости к климатическим и механическим воздействиям согласно приложению № 6 к настоящим Правилам.

_________________________

* Справочно: GPS - Global Positioning System.

Приложение № 1
тактовой сетевой синхронизации

Требования к параметрам сигналов синхронизации

1. Входные сигналы синхронизации 2048 кГц формируются из исходной импульсной последовательности при условии, что затухание на частоте 2048 кГц не превышает 6 дБ.

2. Форма и амплитуда импульсов исходной последовательности приведена на рисунке 1.

"Рисунок 1. Форма и амплитуда импульсов синхросигнала 2048 кГц"

3. Входные сигналы 2048 кбит/с, используемые для синхронизации, формируются из исходной импульсной последовательности, сформированной в коде HDB-3*, и при условии, что затухание на частоте 1024 кГц не превышает 6 дБ.

4. Форма и амплитуда импульсов исходной последовательности приведена на рисунке 2.

"Рисунок 2. Форма и амплитуда импульсов синхросигнала 2048 кбит/с"

5. Выходные синхросигналы 2048 кГц являются импульсной последовательностью, форма и амплитуда импульсов соответствует форме и амплитуде импульсов, приведенных на рисунке 1.

6. Импульсы синхросигнала 2048 кГц на выходе оборудования синхронизации, показанные на рисунке 1, имеют амплитуду В, равную 1,0 - 1,9 В при симметричной нагрузке 120 Ом, и амплитуду В, равную 0,75 - 1,5 В при несимметричной нагрузке 75 Ом. Период повторения импульсов (Т) равен 488 нс, амплитуда В_1 равна половине амплитуды В.

7. Выходные синхросигналы 2048 кбит/с формируются в коде HDB-3. Форма и амплитуда импульсов HDB-3 соответствует форме и амплитуде импульсов, приведенных на рисунке 2.

8. Синхросигнал 2048 кбит/с, состоящий из биполярных импульсов, на выходе оборудования при нагрузке 120 Ом имеет амплитуду импульса (рисунок 2) равную 3В ± 20 %, при нагрузке 75 Ом - 2,37 В ± 20 %. В паузе между импульсами напряжение не превышает 10 % от номинальной амплитуды импульсов. Соотношение амплитуд импульсов разной полярности находится в пределах 0,95 - 1,05.

9. Выходные сигналы 2048 кбит/с структурированы по циклам и сверхциклам, а также переносят информацию об уровне качества источника синхросигнала**.

10. Дрожание фазы выходных синхросигналов в полосе 20 Гц - 100 кГц не превышает 0,05 тактового интервала при времени измерения 60 с.

11. Параметры выходных сигналов синхронизации определяются при условии использования входных сигналов в качестве опорных для измерительного оборудования (при измерениях выходных сигналов ПЭГ и ПЭИ опорным сигналом для измерительного оборудования является сигнал, полученный от поверенного стандарта частоты, у которого ошибка в установке номинала не превышает 2 × 10(-11) отн. ед.).

12. Блуждания фазы выходных синхросигналов при синхронизации оборудования от эталонного генератора, выраженные через характеристики максимальной ошибки временного интервала (далее - МОВИ) и девиации временного интервала (далее - ДВИ), в указанных условиях ограничены следующими пределами:

12.1. Для ПЭГ и ПЭИ:

Ограничительная маска приведена на рисунке 3;

"Рисунок 3. Максимальная ошибка временного интервала для ПЭГ, ПЭИ"

Ограничительная маска приведена на рисунке 4.

"Рисунок 4. Девиация временного интервала для ПЭГ, ПЭИ"

12.2. Для ВЗГ, МЗГ:

Ограничительная маска приведена на рисунке 5;

"Рисунок 5. Максимальная ошибка временного интервала для ВЗГ, МЗГ"

Ограничительная маска приведена на рисунке 6.

"Рисунок 6. Девиация временного интервала для ВЗГ, МЗГ"

12.3. Для РСС и ПСС:

а) МОВИ (нс) ≤ 3 на всех интервалах наблюдения τ (с);

б) ДВИ (нс) ≤ 1 на всех интервалах наблюдения τ (с).

13. Значения амплитуды фазовых блужданий синхросигнала на входах ВЗГ и МЗГ для различных частот f приведены в таблице.

_____________________

* Справочно: HDB-3 - High Density Bipolar 3 (биполярный код с высокой плотностью 3-го порядка).

** Для выходных сигналов ПЭИ, ПСС, РСС допустимо отсутствие информации о качестве источника синхросигнала, а для сигнала от ПЭИ - структурированности по циклам.

Приложение № 2
к Правилам применения оборудования
тактовой сетевой синхронизации

Требования к параметрам ПЭИ, ПЭГ, ВЗГ, МЗГ, РСС, ПСС

1. Оборудование (ВЗГ и МЗГ) синхронизируется от входных синхросигналов, временные параметры которых находятся в пределах, приведенных в пункте 13 приложения № 1 к настоящим Правилам.

2. Выходные сигналы оборудования ПСС не зависят от наличия фазовых блужданий во входном сигнале 2048 кбит/с, пределы которых не превышают 10 мкс на временном интервале (10 - 100) с.

3. Точность установки номинального значения частоты выходных сигналов в отсутствии внешнего синхросигнала (в автономном режиме) ограничена следующими пределами:

3.1. Для ПЭИ и ПЭГ относительное отклонение частоты от номинального значения составляет не более 1 × 10(-11) на суточном и более длительном временном интервале.

3.2. Для ВЗГ изменение частоты при пропадании синхросигнала составляет не более 5 × 10(-10) и 2 × 10(-10) на суточном временном интервале.

3.3. Для МЗГ изменение частоты при пропадании синхросигнала составляет 1 × 10(-9), на суточном временном интервале составляет 1 × 10(-9).

4. Суточный относительный уход частоты в режиме запоминания не превышает: для ВЗГ - 2 × 10(-10), для МЗГ - 1 × 10(-9).

5. Полоса захвата сигнала синхронизации составляет: для ВЗГ - 2 × 10(-8), для МЗГ - 2 × 10(-7).

6. В ПЭГ и ВЗГ обеспечивается резервирование, переключение на резервный комплект не вызывает фазовых скачков в выходном сигнале, превышающих пределы:

1) для ПЭГ, ВЗГ и МЗГ:

а) не более 60 нс на временном интервале τ ≤ 0,001 с;

б) 120 нс на временном интервале 0,001 < τ ≤ 4 с;

в) 240 нс на временном интервале τ ≥ 4 с;

2) для РСС и ПСС - 240 нс на временном интервале 0,1 < τ ≤ 2,5 с.

7. Передаточная характеристика соответствует характеристике фильтра нижних частот с полосой 3 МГц для ВЗГ и 20 МГц для МЗГ. Усиление в полосе пропускания не превышает 0,2 дБ.

8. Выходные сигналы с частотой 5 и (или) 10 МГц и 1 Гц, формируемые оборудованием синхронизации, имеют синусоидальную форму или форму прямоугольных импульсов амплитудой не менее 1 В на нагрузке 50 или 75 Ом.

9. Сигнал 1 Гц, формируемый оборудованием синхронизации, имеет форму импульса, амплитуда которого равна (3,5 - 5) В, длительность не превышает 50 мкс.

Приложение № 3
к Правилам применения оборудования
тактовой сетевой синхронизации

Требования к управлению тактовой сетевой синхронизацией

1. СУ ТСС обеспечивает выполнение функции контроля и управления на уровнях управления сетевыми элементами в следующих областях:

1) области управления обработки неисправностей;

2) области управления качеством синхросигналов;

3) области управления конфигурацией;

4) области управления безопасностью.

1.1. В области управления обработки неисправностей СУ ТСС обеспечивает выполнение следующих функций:

1) обнаружения и локализации неисправностей;

2) индикации неисправностей входного сигнала;

3) ведения журнала истории событий и аварий с указанием: блока - источника события, типа события и времени возникновения.

1.2. В области управления качеством синхросигналов СУ ТСС обеспечивает выполнение следующих функций:

1) контроля параметров входных сигналов и сравнение их с устанавливаемыми масками;

2) вывода результатов измерений;

3) анализа результатов измерений.

1.3. В области управления конфигурацией СУ ТСС обеспечивает выполнение следующих функций:

1) для входных сигналов:

а) выбора канала;

б) установки приоритетов;

в) установки типа входного сигнала;

г) установки уровня допустимого качества входного сигнала;

2) для выходных сигналов:

а) установки резервирования выходного сигнала;

б) включения (выключения) выходного сигнала;

в) установки уровня качества в формируемом сигнале 2048 кбит/с;

3) в части управления:

а) включения (выключения) порта местного управления;

б) установки скорости для последовательного порта.

1.4. В области управления безопасностью СУ ТСС обеспечивает выполнение следующих функций:

а) введения классов пользователей: с разрешением только на просмотр, с разрешением на просмотр и конфигурирование, с разрешением на просмотр, конфигурирование и управление пользователями СУ ТСС;

б) введения паролей и идентификаторов для пользователей.

1.5. Оборудование управляется с помощью местного рабочего терминала, подключаемого через интерфейсы Ethernet, RS-232.

1.6. Оборудование обеспечивает круглосуточный непрерывный режим работы СУ ТСС.

1.7. В СУ ТСС имеются средства контроля, диагностики и восстановления при отказах и сбоях.

Приложение № 4
к Правилам применения оборудования
тактовой сетевой синхронизации

Требования к параметрам электропитания

1. Требования к параметрам электропитания приведены в таблицах №№ 1 - 5.

Таблица № 1. Требования к параметрам источников электропитания

Таблица № 2. Требования к пределам изменения напряжения источников электропитания постоянного тока

Таблица № 3. Требования к параметрам помехи источника электропитания постоянного тока

Таблица № 4. Требования к параметрам напряжения помех, создаваемых оборудованием в цепи источника электропитания

Таблица № 5. Требования к параметрам источников электропитания переменного тока

Параметр

Значение

1. Допустимые изменения напряжения сети переменного тока, В

от 187 до 242

2. Допустимая частота переменного тока, Гц

от 47,5 до 52,5

3. Допустимый коэффициент нелинейных искажений напряжения, %

4. Допустимое отклонение напряжения от номинального значения, %:

а) длительностью до 1,3 с

б) длительностью до 3 с

5. Допустимое импульсное перенапряжение (длительность фронта/ длительность импульса - 1/50 мкс), В

__________________

Примечания:

1) После воздействий по пунктам 4, 5 оборудование соответствует заданным требованиям.

2) В случае снижения напряжения источника электропитания за допустимые пределы и при последующем восстановлении напряжения параметры оборудования восстанавливаются автоматически

2. В оборудовании обеспечивается защита от перенапряжений до 500 В.

Приложение № 5
к Правилам применения оборудования
тактовой сетевой синхронизации

Требования к параметрам электромагнитной совместимости

Приложение исключено согласно приказу Министерства связи и массовых коммуникаций РФ от 23 апреля 2013 г. № 93.

Приложение № 6
к Правилам применения оборудования
тактовой сетевой синхронизации

Требования к параметрам устойчивости к климатическим и механическим воздействиям

1. Оборудование, устанавливаемое в отапливаемых помещениях, соответствует заданным требованиям при температуре от + 5 °С до + 40 °С.

2. Оборудование, устанавливаемое в отапливаемых помещениях, соответствует заданным требованиям при воздействии повышенной влажности до 80 % при температуре + 25 °С.

3. Оборудование не содержит узлы и конструктивные элементы с резонансом в диапазоне частот (5 - 25 Гц).

Внедрение сетей SDH, использующих наряду с привычной топологией точка-точка, кольцевую и ячеистую топологии, привнесло дополнительную сложность в решение проблем синхронизации, так как для двух последних топологий маршруты сигналов могут меняться в процессе функционирования сетей.

Сети SDH имеют несколько дублирующих источников синхронизации, которые можно разделить на два класса:

внешние и внутренние.

Внешняя синхронизация:

Сигнал внешнего сетевого таймера, или первичный эталонный таймер PRC, определяемый в

Сигнал с трибного интерфейса канала доступа (рассматриваемый здесь как аналог таймера

2048 кГц, выделяемый из первичного потока 2048 кбит/с;

Линейный сигнал STM-N, или линейный таймер, сигнал 2048 кГц, выделяемый из линейно-

го сигнала 155,52 Мбит/с или 4n x 155,52 Мбит/с.

Внутренняя синхронизация:

Сигнал внутреннего таймера (рассматриваемый как таймер ведомого локального узла LNC),

Что касается точности сигналов внешней синхронизации, то она соответствует стандартам G.811, G.812.

Точность сигналов внутренней синхронизации регламентируется

производителями и для мультиплексоров SDH составляет обычно 4,6·10 -6 .

Учитывая, что трибы 2 Мбит/с, пришедшие из сетей SDH, отображаются в VC-12 и могут

плавать в рамках структуры вложенных контейнеров, использующих указатели, их сигналы должны быть исключены из схемы синхронизации сети SDH. Реализуемая точность внутреннего таймера мала и, учитывая возможность накапливания ошибки в процессе так называемого "каскадирования сигналов таймеров", когда узел сети восстанавливает сигнал таймера по принятому сигналу и передает его следующему узлу, может быть использована только локально. В этом смысле наиболее надежными источниками синхронизации являются сигнал внешнего сетевого таймера и линейный сигнал STM-N.



Синхронизация:

внутренняя:

- +/- 4.6*10 -6 с дрейфом не хуже 0.37x10 -6 в день;

внешняя:

2048 кГц в соответствии с G.703.10 (импеданс: 120 Ом - симметричное подключение и 75 Ом - коаксиальный кабель);

Трибы 2 Мбит/с;

Линейный сигнал STM-N.

выходы:

2048 кГц (импеданс: 120 Ом - симметричное подключение и 75 Ом - коаксиальный кабель) в соответствии с ITU-T Rec. G.703.10.

Выбор типа синхронизации осуществляется в соответствии с установленными приоритетами или по алгоритму, использующему сообщения о статусе синхронизации SSM.

В общем случае сеть ТСС включает в себя:

Все цифровые устройства системы телекоммуникаций, которые можно охарактеризовать как генераторы синхросигналов;

Систему путей, по которым передается информация о единой тактовой частоте – сеть синхросигналов;

Сигналы, которые осуществляют передачу информации о тактовой частоте (непосредственно синхросигналы), и сигналы, передающие информацию о статусе синхронизации.

Тип синхросигнала Значение Уровень качества Q Код Значение
Т0 Сигнал внутреннего задающего генератора Качество неизвестно. Здесь Q0 соответствует оборудованию прежних выпусков, где байт S1 ещё не был определён
Т1 Синхросигнал, выделяемый из цифрового потока STM-N ПЭГ (PRC)
Т2, 2048 кбит/с Предназначен для синхронизации мультиплексора SDH, поступает от коммутационной станции СРЕ или МЗГ ВЗГ (SSU)
Т3, 2048 кГц Предназначен для синхронизации ВЗГ или СРЕ ВЗГ (SEC)
Т4, 2048 кГц Сигнал с выхода ВЗГ, блока синхронизации цифровой АТС или мультиплексора (СРЕ) Местный генератор (генератор сетевого элемента в режиме удержания, CPE)
Для синхронизации не использовать

Для выбора опорного источника синхронизации из нескольких доступных используются следующие правила:

1. Из всех доступных источников выбирается источник с наивысшим качеством;

2. Если источников наивысшего качества несколько, то из них выбирается источник с наивысшим приоритетом;

3. Источнику, полученному от аварийного сигнала, соответствует уровень качества Q6 вне зависимости от кода в байте S1;

4. В байтах S1 потока, направляемого навстречу потоку, из которого был выделен опорный сигнал для синхронизации данного мультиплексора (сетевого элемента), устанавливается уровень качества Q6.

Синхронизация – это средство поддержания работы всего цифрового оборудования в сети связи на одной средней скорости. Для цифровой передачи информация преобразуется в дискретные импульсы. При передаче этих импульсов через линии и узлы связи цифровой сети все ее компоненты должны

синхронизироваться. Синхронизация должна существовать на трех уровнях:

битовая синхронизация, синхронизация на уровне канальных интервалов (time slot) и кадровая синхронизация.

Битовая синхронизация заключается в том, что передающий и принимающий концы линии передачи работают на одной тактовой частоте, поэтому биты

считываются правильно. Для достижения битовой синхронизации приемник может получать свои тактовые импульсы с входящей линии. Битовая синхронизация включает такие проблемы как джиттер линии передачи и плотность единиц. Эти проблемы поднимаются при предъявлении требований к синхронизации и системам передачи.

Синхронизация канального интервала (time slot) соединяет приемник и передатчик таким образом, чтобы канальные интервалы могли быть идентифицированы для извлечения данных. Это достигается путем использования фиксированного формата кадра для разделения байтов. Основными проблемами синхронизации на уровне канального интервала являются время изменения кадра

и обнаружение потери кадра.

Кадровая синхронизация вызвана необходимостью согласования по фазе передатчика и приемника таким образом, чтобы можно было идентифицировать

начало кадра. Кадром в сигнале DS1 или Е1 является группа битов, состоящая из 24 или 30 байтов (канальных интервалов) соответственно, и одного

импульса кадровой синхронизации. Время кадра равно 125 микросекундам. Канальные интервалы соответствуют пользователям конкретных (телефонов) каналов связи.

Тактовый генератор сети, расположенный в узле источника, управляет частотой передачи через этот узел битов, кадров и канальных интервалов. Вторичный генератор сети расположенный в принимающем узле, предназначен для управления скоростью считывания информации. Целью тактовой сетевой синхронизации является согласованная работа первичного генератора и

приемника с тем, чтобы принимающий узел мог правильно интерпретировать цифровой сигнал. Различие в синхронизации узлов, находящихся в одной сети, может привести к пропуску или к повторному считыванию принимающим узлом посланной на него информации. Это явление называется проскальзыванием.

Например, если оборудование, передающее информацию, работает на частоте, большей, чем частота принимающего оборудования, то приемник не может отслеживать поток информации. В этом случае приемник будет периодически пропускать часть передаваемой ему информации. Потеря информации называется проскальзыванием удаления.

В случае, если приемник работает на частоте превышающей частоту передатчика, приемник будет дублировать информацию, продолжая работать на своей частоте и все еще осуществляя связь с передатчиком. Это дублирование информации называется проскальзыванием повторения.

Для управления проскальзываниями в потоках DS1 и E1 используются специальные буферы. Данные записываются в буфер принимающего оборудования с частотой первичного генератора, а считываются из буфера тактовой частотой принимающего оборудования. На практике могут применяться

различные размеры буферов. Обычно буфер содержит более одного кадра. В этом случае принимающее оборудование при проскальзывании будет пропускать или повторять целый кадр. Это называется управляемым проскальзыванием.

65 нанометров - следующая цель зеленоградского завода «Ангстрем-Т», которая будет стоить 300-350 миллионов евро. Заявку на получение льготного кредита под модернизацию технологий производства предприятие уже подало во Внешэкономбанк (ВЭБ), сообщили на этой неделе «Ведомости» со ссылкой на председателя совета директоров завода Леонида Реймана. Сейчас «Ангстрем-Т» готовится запустить линию производства микросхем с топологией 90нм. Выплаты по прошлому кредиту ВЭБа, на который она приобреталась, начнутся в середине 2017 года.

Пекин обвалил Уолл-стрит

Ключевые американские индексы отметили первые дни Нового года рекордным падением, миллиардер Джордж Сорос уже предупредил о том, что мир ждет повторение кризиса 2008 года.

Первый российский потребительский процесор Baikal-T1 ценой $60 запускают в массовое производство

Компания «Байкал Электроникс» в начале 2016 года обещает запустить в промышленное производство российский процессор Baikal-T1 стоимостью около $60. Устройства будут пользоваться спросом, если этот спрос создаст государство, говорят участники рынка.

МТС и Ericsson будут вместе разрабатывать и внедрять 5G в России

ПАО "Мобильные ТелеСистемы" и компания Ericsson заключили соглашения о сотрудничестве в области разработки и внедрения технологии 5G в России. В пилотных проектах, в том числе во время ЧМ-2018, МТС намерен протестировать разработки шведского вендора. В начале следующего года оператор начнет диалог с Минкомсвязи по вопросам сформирования технических требований к пятому поколению мобильной связи.

Сергей Чемезов: Ростех уже входит в десятку крупнейших машиностроительных корпораций мира

Глава Ростеха Сергей Чемезов в интервью РБК ответил на острые вопросы: о системе «Платон», проблемах и перспективах АВТОВАЗа, интересах Госкорпорации в фармбизнесе, рассказал о международном сотрудничестве в условиях санкционного давления, импортозамещении, реорганизации, стратегии развития и новых возможностях в сложное время.

Ростех "огражданивается" и покушается на лавры Samsung и General Electric

Набсовет Ростеха утвердил "Стратегию развития до 2025 года". Основные задачи – увеличить долю высокотехнологичной гражданской продукции и догнать General Electric и Samsung по ключевым финансовым показателям.

Синхронизация цифровых сетей – основа их нормальной работы. При восстановлении сигнала важна не только его форма, но и момент его детектирования приемником. Поэтому "часы" на любом из узлов транспортной сети должны показывать "одно и то же время" – т.е. работать синхронно, с точностью до пикосекунды. Как этого добиться без чрезмерно больших затрат, если узлы разнесены порой на тысячи километров?


ОСНОВНЫЕ ТИПЫ СИНХРОНИЗАЦИИ И СВЯЗАННЫЕ С НИМИ ПОНЯТИЯ


Проблемы синхронизации цифровых сетей – это часть общей задачи синхронизации цифровых последовательностей, однако они имеют и некоторые специфические особенности. Две сопоставляемые цифровые последовательности могут быть синхронизированы по трем параметрам:

  • по времени прихода на узел сети t – временная синхронизация;
  • по начальной фазе синхронизируемого блока – фазовая синхронизация;
  • по длительности интервала (t) или частоте следования импульсов f = 1/t – частотная синхронизация.

Задача временной синхронизации глобальна, но решается просто, если использовать службу единого скоординированного времени (UTC) или единый источник синхронизации, например навигационные системы Loran-C и GPS/ГЛОНАСС. Фазовая синхронизация актуальна только для конкретного физического устройства и достаточно просто обеспечивается системами фазовой автоподстройки, позволяющими привязывать начальную фазу сигнала к началу такта локального тактового генератора.

Проблема частотной синхронизации – наиболее сложная, поскольку она глобальна и локальна одновременно (она актуальна как для всей транспортной сети, так и для любого конкретного мультиплексора или коммутатора в точке восстановления). Подавляющее большинство проблем синхронизации относится именно к частотной синхронизации, поэтому далее будем рассматривать только ее.

В цифровых системах с импульсно-кодовой модуляцией (ИКМ), использующих плезиохронную и синхронную цифровую иерархию (ПЦИ/PDH, СЦИ/SDH), основной вид синхронизации – тактовая, она определяет остальные (по фреймам и мультифреймам) виды синхронизации. Проблемы синхронизации возникают, когда несколько простых локальных сетей (узлы имеют топологию "звезды" и настолько близки друг к другу, что временем распространения сигналов между ними можно пренебречь), причем каждая со своим источником тактовой сетевой синхронизации (ТСС), объединяются в сложную сеть передачи.

Если на передающем и принимающем узлах частоты источников тактовой синхронизации (хронирующих источников, или таймеров) не совпадают, за определенное время накапливается ошибка временного интервала (ОВИ/TIE), равная разности момента прихода (tп) n-го импульса цифровой последовательности и момента генерации (tг) n-го импульса источником тактовой синхронизации принимающего узла. Частота местного источника ТСС может быть выше или ниже частоты принимаемой последовательности. В зависимости от этого, когда ОВИ становится соизмеримой с длиной тактового интервала, происходит либо пропадание одного импульса, либо формирование лишнего – что приводит к срыву синхронизации. Данное явление называют проскальзыванием или слипом (slip). При передаче аудиосигнала слипы воспринимаются как щелчки – до определенного уровня это терпимо. Однако при передаче данных они приводят к нарушению связи.

Качество синхронизации можно оценить периодом времени, за который накопленная ОВИ приводит к срыву тактовой синхронизации, или частотой проскальзываний в единицу времени. Учитывая, что отдельные участки сложной сети могут синхронизироваться от источников различной точности, важно определить предельно допустимые значения частоты слипов. В соответствии с руководящими техническими материалами Министерства связи (РТМ МС) РФ все системы ТСС классифицируются по четырем типам: синхронный – слипов фактически нет; псевдосинхронный – допускается Ј1 слип/70 дней; плезиохронный – Ј1 слип/17 часов и асинхронный – Ј1 слип/7 с.


ОСНОВНЫЕ СХЕМЫ УПРАВЛЕНИЯ В СЕТЯХ ТСС


Общие вопросы синхронизации и основные определения описаны в рекомендации ITU-T G.810, они актуальны для сетей как с PDH, так и с SDH. Цель тактовой синхронизации – передать с требуемой точностью информацию о длине единичного тактового интервала t0 (или о тактовой частоте f0) всем устройствам/узлам одной сети или всем взаимодействующим сетям. Компактную региональную сеть можно синхронизировать одним высокоточным таймером (первичным) в центральном узле сети, транслируя его такты на другие узлы сети (как в службе времени большого города). Для этого необходим не только первичный таймер, но и надежная система распределения сигнала синхронизации (СРСС) на все узлы сети.

Если сеть глобальная, то для синхронизации ее можно разделить на несколько региональных сетей, каждая – со своим первичным таймером и СРСС. Существуют два основных метода тактовой синхронизации : иерархический метод принудительной синхронизации с парами таймеров ведущий-ведомый, и неиерархический метод взаимной синхронизации. На практике распространен только первый метод. В качестве единственного он принят и на Взаимоувязанной сети связи (ВСС) РФ .

СРСС строится по трем альтернативным схемам:

  • одноуровневая звезда – все узлы сети питаются от одного первичного эталонного генератора тактовых импульсов (ПЭГ), расположенного в центре звезды (хабе);
  • распределенная одноуровневая схема – каждый (или каждый второй) узел сети снабжается ПЭГ или его эквивалентом – приемником сигналов единого первичного эталонного генератора;
  • иерархическая многоуровневая схема. Ее суть в том, что сигналы ПЭГ (первый уровень иерархии) распределяются по синхронизируемым элементам (СЭ) дерева сети синхронизации до второго уровня иерархии, где они управляют вторичными источниками – вторичными задающими генераторами (ВЗГ), которые через цепочки СЭ управляют локальными источниками синхронизации третьего уровня иерархии. Эта схема управления часто называется схемой типа ведущий-ведомый (или master-slave). В документах о ВСС РФ принята именно эта схема управления синхронизацией .

ПЭГ строится на основе хронирующих атомных источников тактовых импульсов (водородный или цезиевый эталон) c точностью поддержания частоты не хуже 10-13–10-12. Калибруется вручную или автоматически по сигналам UTC. Сигналы ПЭГ (а также генераторов нижних уровней иерархии) распространяются аппаратурой распределения сигнала синхронизации (SDU/АРСС), обеспечивающей на практике от 16 до 520 интерфейсных выходов сигналов ТСС, которые по наземным линиям связи передаются для управления ВЗГ.

Стандарты предусматривают четыре режима работы хронирующих источников: – режим ПЭГ (мастер-узел); режим принудительной синхронизации (ведомый ВЗГ, транзитный и/или местный узлы); режим удержания (holdover) с точностью удержания 5 10-10 для транзитного узла и 10-8 для местного узла и с суточным дрейфом 10-9 и 2 10-8, соответственно ; свободный режим (free run) для транзитного и местного узлов с точностью удержания 10-8 и 10-6, соответственно.


ТОЧНОСТНЫЕ ПАРАМЕТРЫ И ОСНОВНЫЕ ОШИБКИ ЭТАЛОННЫХ ИСТОЧНИКОВ


Эталонные источники разных уровней формируют следующие эталонные синхросигналы:

  • 2048 кГц – синхронный частотный сигнал в соответствии с ITU-T G.703/13 – для синхронизации АТС, УАК (узлов автоматической коммутации), систем ПЦИ/PDH и СЦИ/SDH;
  • 2048 Кбит/с – потоковый синхронный сигнал псевдослучайной последовательности в соответствии с ITU-T G.703/9, или сигнал, получаемый из входного сигнала Е1 (от АТС или УАК) с использованием функции ретайминга (retiming, ресинхронизация). Применяется для синхронизации систем PDH, SDH и мультиплексорного оборудования;
  • синхронный 64-кГц сигнал для синхронизации основных цифровых каналов (ОЦК) PDH;
  • дополнительные синхронные сигналы 8 кГц; 1; 5 и 10 МГц – для синхронизации цифрового оборудования.

При этом эталонные источники обладают определенной нестабильностью, отдельные параметры которой нормируются соответствующими стандартами для каждого класса оборудования. Основные из них:

  • дрожание фазы/джиттер (jitter) – кратковременные, с частотой выше 10 Гц, смещения фронтов сигнала тактовой синхронизации относительно их идеальных положений во времени. Для всех типов генераторов джиттер не должен превышать 5% от длительности единичного интервала в выходном сигнале 2048 кГц или 2048 Кбит/с;
  • дрейф фазы/вандер (wander) – медленные, с частотой не выше 10 Гц, смещения фронтов сигнала тактовой синхронизации относительно их идеальных положений во времени. Для всех типов генераторов вандер не должен превышать 12,5% от длительности единичного интервала в выходном сигнале 2048 кГц или 2048 Кбит/с;
  • полоса захвата (hold-in range) – максимальное расхождение между тактовыми частотами ведущего и ведомого генераторов, в пределах которого ведомый генератор обеспечивает автоподстройку частоты;
  • ошибка временного интервала ОВИ/TIE – разность между измеренными значениями временного интервала Т, необходимого тестируемому генератору для генерации n импульсов длительностью t0 (T = n t0), и аналогичного временного интервала Tref для эталонного генератора (Tref = n tref): TIE(t, n) = T(t, n) – Tref(t, n);
  • максимальная ошибка временного интервала МОВИ/MTIE – максимальное значение разброса временных отклонений сигналов тестируемого генератора от эталонного за некоторый период измерения Т;
  • девиация временного интервала ДВИ/TDEV – измеренное максимальное отклонение параметров временного интервала от их среднего значения;
  • тносительное отклонение частоты Df/fн = (fд – fн) / fн, где fд – действительная частота сигнала, fн – заданная номинальная частота сигнала.

КЛАССЫ И ХАРАКТЕРИСТИКИ ХРОНИРУЮЩИХ ИСТОЧНИКОВ


Основных международных классификаций хронирующих источников две – на основе стандарта ANSI Т1.101 и на основе рекомендаций ITU-T G.811, G.812, G.813. Еще существуют национальные классификации, например предложенная в РТМ МФ РФ классификация на основе понятия "блок системы синхронизации" (БСС) . Статистика возникновения проскальзываний при взаимодействии двух узлов, синхронизируемых таймерами различной точности , показывает, что при существующей точности таймеров синхронный режим вообще недостижим, псевдосинхронный обеспечивают только узлы с таймерами класса Stratum 1 или G.811, а плезиохронный режим можно поддержать, если точность таймеров взаимодействующих узлов не хуже 10-9. Из отечественных таймеров последний режим обеспечивают только генераторы на основе БСС-1. Существенно, что приведенная статистика характеризует только одно звено синхронизации. В многозвенной схеме ситуация ухудшается пропорционально числу звеньев.


ОБОРУДОВАНИЕ СИНХРОНИЗАЦИИ СЕТИ


Оборудование для синхронизации сетей можно условно разделить на две большие категории: автономные хронирующие источники и датчики точного времени. Первые основаны на прецизионных атомных (водородных, рубидиевых или цезиевых) эталонах времени. Достаточно дорогие и редкие до недавнего времени, они (из-за бурного развития синхронных систем связи) производятся серийно и вполне доступны для установки в сетях. Характерные примеры подобных устройств : эталоны водородные – активный VCH-1003A (погрешность по частоте ±1,5 10-12) и пассивный VCH-1004 (погрешность ±3,0 10-12); цезиевый HP 5071A (погрешность ±1,5 10-12); рубидиевый ННИПИ Р-1050С (±2,0 10-11). Более широко (в первую очередь, в качестве БСС) распространены генераторы с кварцевым первичным источником, но они не используются в ПЭГ. Характерный пример – кварцевый таймер ONIIP M0075 с суточной нестабильностью по частоте ±1,0 10-9.

Однако сегодня наиболее простое решение – датчики точного времени, работающие со спутниковыми системами точного времени. Они обладают точностью синхронизации 10-11 и точностью удержания частоты 10-10. Наиболее доступна (из универсальных и точных) система мирового скоординированного времени UTC. Для его трансляции используются несколько спутниковых систем. Наиболее известные из них – международная спутниковая радионавигационная система LORAN-C, отечественная система позиционирования ГЛОНАСС и глобальная система позиционирования GPS (США) . Последняя, в силу дешевизны приемного оборудования, получила наибольшее распространение.

Список литературы

  1. РТМ по построению тактовой сетевой синхронизации (ТСС) на цифровой сети связи Российской Федерации. – М.: ЦНИИС, 1995.
  2. Концепция развития связи Российской федерации / Под ред. В.Б. Булгака и Л.Е. Варакина. – М.: Радио и связь, 1995. - 224 с.
  3. MainStreet 3645. General Information. Release 5. Newbridge, 1994.
  4. Рыжков А.В., Кириллов В.П., Кадерлеев М.К. Основы системы ТСС магистральной цифровой сети. – Вестник связи, 2000, №10.
  5. Слепов Н.Н. Современные цифровые технологии оптоволоконных сетей связи. – М.: Радио и связь, 2000.